POA
English
English
  • Welcome to POA
  • Features
    • Known Validators
    • POADAO Consensus
    • Bridged Native Token
    • On-Chain Randomness
  • Use Cases
    • Scalability for BlockChain Games
    • Community-Based Currencies
    • Subsidized Transactions
    • Decentralized Finance (DeFi)
  • DApp Spotlights
    • Ethernal.World
  • Roadmap
  • For users
    • POA Tokens
      • POA Merger & STAKE Swap
      • POA - STAKE FAQs
      • POA Token Supply
      • POA & POA20 Exchanges
      • POA & POA20 on Binance
      • FAQ: POA20 General Questions
    • POA Token Use Cases
      • Utility Token
      • Currency Token
      • Collateral Token
      • Bridged Token
      • Staking Token
      • Stable Token
    • POA to POA20 Bridge
    • Accept POA20 Payments
      • Account Registration & Login (Merchant Setup)
      • Setup Merchant Account
      • Merchant Payment Method Setup
      • Making a Payment with POA20 (Customer Perspective)
    • Tutorials
      • Trading POA20 on DEX.AG
      • POA20 Token Swaps on 1inch.exchange
      • Getting Airdrops via Discord
    • Governance
      • Article: A Successful Year of On-Chain Governance
      • Governance Reports
        • April 2020 Report
        • December 2019 Report
      • Ballot Type, Lifecycle & Limits
    • ❌Nifty Wallet (Discontinued)
      • Getting Started
      • Import and Interact with Smart Contracts
      • Connect to a Hardware Wallet (Ledger & Trezor)
      • Connect to D'CENT Biometric Wallet
      • Connect to Pocket Decentralized Network
    • 3rd Party Wallets
      • Trust Wallet
      • MetaMask
    • POA Mania
      • News - Updates
      • Rules
      • POA Mania FAQs
      • Deposit & Withdraw
      • Winner Selection
      • Round Details
      • POA Mania vs PoolTogether
      • POA Mania on Trust Wallet
      • POA Mania Security Audit
      • POA Mania on MetaMask Mobile
    • Whitepaper
      • POADAO v1
        • Introduction
        • Proof of Authority
        • POA Network Functionality
        • Decentralized apps (DApps)
          • Initial ceremony DApp
          • Proof of Physical Address (PoPA) DApp
          • Proof of Bank Account DApp
          • Proof of Social Network DApp
          • Proof of Phone Number DApp
          • Governance DApp
        • Summary & Acknowledgements
        • References
        • Appendix A: Code Samples
          • Ballots manager
          • Validators manager
          • Deployment scripts for the mining node
  • For developers
    • Developer Resources
    • Getting Tokens For Tests
      • ERC20 Test Token Faucet
      • Sokol Testnet Faucet
    • Full Node Setup
      • Install OpenEthereum Client
      • Install Nethermind Client
    • DApp Deployment
    • TheGraph Data Indexing
    • On-Chain Random Numbers
      • RNG explainer (AuRa + RandomAura Contract)
      • Accessing a Random Seed with a Smart Contract
      • Randomness FAQs
    • API & SQL Access
    • Smart Contract Dashboard
    • Grants for Building on POA
  • For validators
    • Getting Started
      • Validator Resources
      • Becoming a Validator
    • Bootnode Setup
      • AWS Bootnode Setup
        • Prerequisites
        • Configure AWS
        • Download and Configure Playbook
        • Deploy
      • Non-AWS Bootnode Setup & Deployment
        • Local/Remote Machine System Requirements
        • Node Preparation
        • Configure node with Deployment Playbook
    • Validator Node Setup
      • Nethermind Upgrade
      • AWS VM for Validator Node Deployment
        • MoC: Master of Ceremony Key Exchange & Generation
        • Current Validators Vote in New Validators
        • Validator Node Setup Prerequisites
        • Configuring AWS
        • Download and Configure Playbook
        • Deployment
        • Upgrade Instance to a Larger Instance Type
      • Non-AWS Validator Node Setup
        • Local & Remote Machine System Requirements
        • Remote Machine Setup
        • Configure Node using Deployment Playbook
      • NetStats Dashboard
    • Hard Forks
      • Parity Upgrade Guide
      • POA Core
        • 2021-11-02 | #24090200
        • 2021-05-24 | #21364900
        • 2020-03-31 | #14350721
        • 2019-12-19 | #12598600
        • 2019-04-29 | #8582254
        • 2018-01-29 | # 772000
        • 2018-10-22 | #5329160
        • POA Core spec.json hard-fork update
      • Sokol
        • 2021-05-24 | #21050600
        • 2020-02-20 | #13391641
        • 2019-12-05 | #12095200
        • 2019-02-06 | #7026400
        • 2019-01-04 | #6464300
        • 2018-09-19 | #4622420
        • 2018-01-18 | #509355
        • 2018-01-08 | #362296
        • Sokol spec.json hard-fork update
    • Validator DApps
      • Validators MetaData DApp
      • Adding or Removing a Validator
  • Media
    • Social Media
    • Media Kit
    • Contact Us
Powered by GitBook
On this page
  • Subsidized Use Case: Kauri Article Registry
  • More Information:

Was this helpful?

  1. Use Cases

Subsidized Transactions

Low per-transaction fees enable applications to pay for user interactions

PreviousCommunity-Based CurrenciesNextDecentralized Finance (DeFi)

Last updated 5 years ago

Was this helpful?

Subsidized Use Case: Kauri Article Registry

Kauri is a decentralized article repository, similar to Medium for web3. Users create articles, tutorials and documentation and publish them on the platform.

When a user creates an article with Kauri, it is stored in . Metadata like the author's name, article id, and IPFS hash is then committed on-chain to register ownership and creation time.

In a standard scenario, the user needs to create a transaction to publish the article, and another transaction for each and every update. This can become costly, unintuitive, and cumbersome for the article creator.

Ideally, a user should not have to pay for each transaction when publishing content, or worry about how much a transaction will cost. To address this problem, on-chain transaction payments can be shifted to a meta-transaction model, where a relayer is setup to pay all transaction costs. Users don't need any Ether, they can simply provide their data and the deployed contracts and relayer take care of the rest.

However, this can be unsustainable on the Ethereum mainnet where gas costs fluctuate and may become expensive. If an application wants to scale, costs can rise very quickly.

By moving publication registration to the POA Network, Kauri is able to subsidize transaction costs by using meta-transactions. A full block on POA costs less than .01 cent. This enables users to simply enter their data, and the transactions are paid for behind the scenes by the application. The user doesn't know they are using a sidechain, and the transaction costs are easy for Kauri to cover.

More Information:

IPFS
POA Network and Kauri announce partnership to increase access to information in the Ethereum ecosystemForum
Logo